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An approximate method of solution of dynamic problems for linear viscoelastic
media exhibiting an instantaneous elasticity, is given,” The method yields
exact results for media which satisfy the Maxwell model. In the past the inves-
tigations were focused mainly on the simplest problems with the kernels of vis-
coelastic operators assuming particular forms, especially for the Maxwell body
or in the neighborhood of a viscoelastic wavefront [1 — 8], and on the asympt-
otic solutions using the method of steepest descent [4],

l, Formulation of the problem and a method of
approximate solution, Linear viscoelastic bodies exhibiting instantan-
eous elasticity are described by two linear, time-dependent Boltzmann -type operators
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where f; (t) and f, (f) are kemels of the viscoelastic operators which are approx-
imated more conveniently by expressing them in the form of a sum of exponential

terms, i.e. [5]
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A and p are elastic constants, y,; are the viscosity parameters and T,, denote
the relaxation times,
We shall limit ourselves, for simplicity, to considering two-dimensional plane
problems, and reduce the equations of motion of a linear, isotropic, viscoelastic med-
ium, to the form

1 %, 1 O, . 1.3
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where the functions u; and V; must satisfy the following additional relations:
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When the Poisson's ratio is constant, which is true to within a large degree  of
accuracy, the kemels f, (f) and f, (£) become equal to each other,

To elucidate the approximate method, we consider an arbitrary integro-different-
ial equation S

1

of the type (1.3), and apply to it a Laplace transform in  {. In the case of zero in-
itial conditions, which is not essential in the present approach, we obtain the follow-
ing equation for u, (z, y, p) :
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where ¢ denotes any one of the velocities a;. The quantity Q* (p) is written for
the kemel £ (¢) of the form (1, 2) in the following manner:

Q* (p) = p* + e1p — ¢ + ¢Q; (P) 1.4
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In the case of a Maxwellian material we have a single relaxation time, and the quant-
ity Q% (p) simplifies to
R =p+p/im (1.5)

Let us make the following assurnption, Since in many dynamic problems for linear
viscoelastic media the time taken by the wave processes is much shorter than the short-
est relaxation time T;, itfollowsthat forthe timeintervalsinquestionwhichis I, we
can neglect the last term in (1, 4) (for a Maxwellian body this term will be identically
equal to zero).

2, One-dimensional plane wave in a viscoelastic
medium, Letusconsider the simplest problem of propagation of a plane wave in
a half-space y > 0, the wave generated by a normal pressure applied at the bound-
ary y = 0 of this half-space. The problem reduces to that of solving the equation

a2y 1

Li(gr) = “=¢

for the displacement U, satisfying the following boundary and initial conditions:
opw=—F@) =0, v=0, (y= )
v=23av/dt =0 (t=0)

Applying now the Laplace transformation in £ , we obtain a problem the solution
of which has the form
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LE) Fo(p) exp [~ @ L] (2.1

Vo (yv p) = ap

Solving (2.1) for p, in which case the quantity Q2 (p) is given by the formula(1. 4)
with the last term omitted, we obtain the following expressions for the displacement
U and stress oy, -
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For the Maxwellian body this yields an exact solution which was already constructed
in [1] using the correspondence principle, while in the case of an elastic body where
7 (t) = 0, we obtain a known solution for the propagation of a plane wave through
an elastic medium, An approximate relation connecting the stress with the velocity

of the particles behind the wave front is also easily obtained
]
dv dv 9 ok
Oy (y,8) = —pa {“,7;“ + S o [exp (— '-é-") I (CoE)] d§}
y/a
and it represents a2 well known relation for a plane, elastic wave,
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Fig.1 Fig.2
Fig., 1 depicts the dependence of the magnitude of the stress 0, at two points
and the dependencies on ¢ , for the following initial values of the problem:
F(@)=o0ysin®*(nt/t)) O<<t<<Yy), n=3, y, =06
v, =03, y; =01, 1, =10 ps, T, = 107 ps,
Tg = 107 ps
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with the dashed line comesponding to the elastic problem. Other one-dimensional
problems of propagation of plane waves can be solved in an analogous manner.

3, Approximate solution of the Lamb's problem,
The problem is reduced to that of solving the equations (1. 3) for a half-plane y<<0,
uner the following boundary and initial conditions:

Oy = 0o @0, 0uy = 03(2)8(t) (y = O)
uj=v;=0 (VZ+P =)
Uj = p; = 3u,-/6‘t = 0p;/0t = 0 (t=0)

Assuming that the Poisson's ratio is constant, we apply to the problem the Laplace
transform in ¢ and the Fourier transform in 2. Then for the functions

oo

Ujp = S dz S u;exp (iox — pt)dt

Vip = S de vjexp (iox — pt)dt
— 0
we obtain
fiyo = Arexp [¥Rr(p)l, Va0 = Asexp [yRs(p)] (3.1
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Let us ingpect the values of the stresses, Using the solution in the form (3.1), we
obtain the following expressions for the Laplace and Fourier trausforms of the stresses

Gijo :
o) =Q(p 2 S P{P (s) exp [Q (PXyRjo (5) — is)} ds 3.2
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P = 2sa,? A!: Ru(s), PE = — z—’ﬁ‘%ao ()
Ri(s) =V & +a1°, Rols) = (1 + 26%as?)

Ay = [Rg? (s) — 4s®a* Ry (s) Ry (9)]
Ay = —liooR, (5) + 2sa,%, Ry (s)]
Agy = — [2sa,%0Ryp () — i6,R, (5)]
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To analyze the expressions (3. 2), we pass to the complex s -plane and replace the
integration with respect to § by integration along the contours Ty Ty and AT, a
shown in Fig, 2, The branch points and poles of the integrand functions are given by

Res; =0, Res; =0, Ims, =a;7Y Ims, = a7
Resp =0, Imsp=ag) Ao(s)|smp=0

Using the method given in [6] and computing the quadratures in (3. 2) along the
contours Iy, T, and AT with the help of the Jordan lemma and theory of residues,
we can obtain the expressions for the stresses 049 in the half-plane y < 0. For
example, we obtain the following expression for o at the free boundary y = 0,

for 0, =0:

of = Q (PNIPE + PRA(s — iak) exp [¢]]5Q (P)I}omaz! .9
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By (s) = [Re*(s) + 48°05* Ryo (5) Rao ()]
F1,2(s) = 45*Ryo (s) Rao () TF (25* + 03)[28% — a5” (1 — 2a:%/a,%))

The above expression was derived incorrectly in a similarly formmlated problem in [7],
In order to invert the expression (3. 3) with respect 0 p, we must invert

Q (p) exp [— aQ (p)]
and this is easily done for the quantity Q® (p) defined by (1,4), We obtain
[ 2 ]
2 | Q@)expl—aQ(p)+ptidp =
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exp (— Yaert {8’ (£ — @) To (col) F — o3 %) —
28 (t — a)(* — o)~ Iy (co V& — a?) +
eo [1(£2 — a?)—"s — 1,02 (£ — a®)—"+] Iy (co Y T8 — o®) +
co*a? (1> — a®y~ I (o V 12 — o) H (t — a)}

For a viscoelastic half-plane made of material conforming to the Maxwell's model,
the formula (3. 3) yields an exact expression for ¢{% at the boundary y = 0,
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